The neural correlates of feature-based selective attention when viewing spatially and temporally overlapping images

Jun Wang a, Brett A. Clementz a,*, Andreas Keil b

a Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA 30602, United States
b Department of Psychology, University of Konstanz, Germany

Received 17 May 2006; received in revised form 16 August 2006; accepted 31 October 2006
Available online 11 December 2006

Abstract

We used dense-array EEG to study the neural correlates of selective attention to specific features of objects that spatially overlapped an unattended image. Participants viewed superimposed images (horizontal and vertical bars differing in color) and attended to one image to identify bar width changes in specific locations. Images were frequency tagged so attention directed to unique parts of the stimuli could be tracked. Steady-state visual evoked potentials were used to quantify attention-related neural activity. As expected, selectively attending to specific parts of the attended image enhanced brain activity related to the attended element, and left unchanged activity elicited by spatially overlapping unattended stimuli. Under specific conditions, however, we found increased activity to unattended stimuli. The specificity of the selective attention effects presented herein, however, may be limited under certain complex stimulus conditions.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Visual steady-state; EEG; Attention; Feature; Object

Visual attention supports the ability to focus on relevant aspects of the visual environment. In particular, selective attention is responsible for enhancing perception of specific stimulus properties such as location, size, color, etc., at specific times (Driver & Frackowiak, 2001; Kastner & Pinsk, 2004). Several authors have proposed that visual selective attention is mediated by neural amplification of cell populations encoding the to-be-attended stimulus (e.g., Hillyard & Anllo-Vento, 1998; Kastner & Pinsk, 2004). In the realm of spatial selective attention, amplitude modulation of activity in neuron populations coding for particular spatial locations is regarded as a simple and effective means for achieving optimized processing at attended locations (Driver & Frackowiak, 2001). With increasing complexity of the visual array under consideration, however, additional processes are required to resolve ambiguity and efficiently direct resources to the task-relevant stimulus. For instance, in situations where attended and unattended stimuli overlap spatially, knowledge of spatial location may be insufficient for separating targets from non-targets (e.g., when trying to detect a white-tailed deer in a thick stand of trees in late fall). In these cases, additional processes such as feature- or object-based selection are required to successfully and correctly identify the visual scene (e.g., Pei, Pettet, & Norcia, 2002; Valdes-Sosa, Bobes, Rodriguez, & Pinilla, 1998). In the laboratory, these kinds of selective attention have been examined using sequentially presented stimuli differing along one or more distinct feature dimensions (i.e., color, size, orientation, etc.). Given the close conceptual relationship between object features and objects defined by distinct features, there has been debate about how feature- versus object-based attention can be independently examined. On the level of brain processes, one common finding has been that large-scale neural activity is reliably enhanced as a function of attentional allocation to visual features (Müller & Keil, 2004), objects (Valdes-Sosa et al., 1998), or spatial locations (Morgan, Hansen, & Hillyard, 1996).

An aspect of this problem that has been rarely studied is the role of selective attention to specific features for resolving visual objects that overlap in space and in time, although this is close to the requirements during most activities of daily life. Valdes-Sosa and co-workers (Rodriguez, Valdes-Sosa, &
Steady-state stimulus delivery has facilitated knowledge acquisition in a variety of areas. For instance, steady-state responses are sensitive to attention manipulations (Morgan et al., 1996; Müller & Hillyard, 2000; Müller & Hübner, 2002; Müller, Teder-Salejarvi, & Hillyard, 1998), the emotional content of stimuli (Keil et al., 2003; Keil, Moratti, Sabatinelli, Bradley, & Lang, 2005; Moratti & Keil, 2005; Moratti, Keil, & Miller, 2006; Moratti, Keil, & Stolarova, 2004), and tonic changes in brain state (Picton, Vajsar, Rodriguez, & Campbell, 1987; Plourde & Picton, 1990; Silberstein et al., 1990). Attention-related changes in N1 ERP amplitudes also correlate with attention-related modulations of ssVEP amplitudes, suggesting a functional link between these two measures (Müller & Hillyard, 2000).

In the present studies, superimposed visual images (Chen et al., 2003) were used to investigate the neural correlates of selective attention (specifically color selection) for an attended stimulus that spatially overlapped an unattended stimulus differing in color. The ssVEP was used to quantify the large-scale neural correlates of selective attention (Morgan et al., 1996). To take full advantage of the ssVEP for studying attentional selection, the present design allowed for measuring changes in the locus of attention within the attended image (by using multiple unique frequency tags) as a function of broad and narrow attention. By virtue of variations in stimulus conditions, we also evaluated the interaction between attentional selection and the size of the to-be-attended area. Thus, changes in attention demands within an attended visual object could be studied in addition to evaluating differences in neural activity between attended and non-attended objects.

1. Method

1.1. Participants

Three experiments comprise this study. All experiments had 12 participants (Experiment 1: 7 males, ages 18–26 years; Experiment 2: 7 males, ages 18–21 years; Experiment 3: 9 males, ages 18–22 years), all of whom participated in only one experiment. Participants had normal or corrected-to-normal vision, had no evidence of neurological impairment, were free of psychiatric or substance use disorders (by self-report), and were given class credit for their participation. The

![Fig. 1. The two images (horizontal and vertical bars) used in these experiments are shown as spatially distinct, but they perfectly overlapped during testing. For the 7-bar study, both images were presented as they are shown here. For the 3-bar study, only the three middle bars of each image were presented to the participants (i.e. the middle bar and the peripheral bars). For the 5-bar study, only the five middle bars of each image were presented to the participants (i.e. the middle bar, the peripheral bars, and the outside bars that were immediately adjacent to the peripheral bars).]
UGA Institutional Review Board approved this study and participants provided informed consent prior to testing.

1.2. Stimuli and procedure

Visual stimuli consisted of two superimposed images (Fig. 1; Chen et al., 2003). Both the horizontal and vertical images were composed of equally spaced parallel bars of 1° of visual angle that were equal in luminance (5.5 cd/m² against a 0.1 cd/m² background). One image was red and the other was green. A centrally-located dim grey dot, on which participants fixated, was visible throughout testing. Stimuli were presented on a 21 in. high-resolution flat surface color monitor with a refresh rate of 100 Hz that was 60 cm from the participants’ eyes.

The three experiments differed in the total number of horizontal and vertical bars used to drive the visual system (see Fig. 1). In Experiment 1, each image was 13° square and consisted of seven colored bars (one middle bar, two peripheral bars, and four outside bars—two on each side). In Experiment 2, each image was 5° square and consisted of three colored bars (one middle bar and two peripheral bars). In Experiment 3, each image was 9° square and consisted of five colored bars (one middle bar, two peripheral bars, and two outside bars—one on each side).

In all experiments, either the horizontal or vertical bars were identified as the to-be-attended image throughout 2-min trial blocks (Chen et al., 2003). For the attended image, subjects were to identify width changes (30% increase or decrease) in either any of the three middle bars (attend-all condition) or in the center middle bar alone (attend-mid condition). The attentional manipulation, therefore, allowed for comparisons between broad and narrow attention, like in the Chen et al. (2003) study, as opposed to simply comparing attend and unattend conditions. During each trial block, any of the three middle bars in either the attended or unattended image was randomly and independently selected for a width change. Width changes lasted for ≈400 ms before the bar returned to its original size; the interval between width changes was randomly selected from a 1 to 3 s rectangular distribution. Subjects were to respond to target events with a button press.

An important requirement when using the “method of multiple stimuli” (Regan & Regan, 2003) is that the tag frequencies be close enough that their differences are undetectable to the observer, differences between them are irrelevant to the sensory system under investigation, and that the different frequencies are not harmonically related. In this study, the tag frequencies, which were created by flashing the figure for one refresh and then varying the number of blank refreshes between flashes, were all within a 1.66 Hz range (6.67–8.33 Hz). This has the additional advantage of minimizing possible confounds between attention modulation and tagging frequency (cf., Ding, Sperling, & Srinivasan, 2006).

For the 7-bar experiment, each image (all seven bars) flickered in unison at a unique frequency, either 7.14 or 8.33 Hz. Using these stimuli, like in Chen et al. (2003), strength of attention to the attended and unattended image could be quantified, but determining whether attention shifted within the attended image depending on condition (attend-all versus attend-mid) was not possible. For the 3- and 5-bar experiments, the attended image had bars flickering at different frequencies. In the three bar experiment, the middle bar of the attended image always flickered at 7.69 Hz, but the peripheral bars of the attended image and the whole unattended image flickered at either 7.14 or 8.33 Hz. The flicker rates in the 5-bar experiment were the same as those in the 3-bar experiment, except that the outside bars of the attended image also flickered at the unique frequency of 6.67 Hz. For these experiments, whether and how attention shifted within the attended image depending on condition (attend-all versus attend-mid) could be determined. Exactly as in the Chen et al. (2003) study, the order of trial block presentations was counterbalanced by color of attended bars (red or green) and direction of attended bars (horizontal or vertical) and frequency of the unattended image (7.14 or 8.33 Hz). For each condition (attend-all, attend-mid), therefore, eight 2-min trial blocks were completed by each participant.

1.3. EEG Recording

EEG data were measured using a 256-channel Geodesic Sensor Net and NetAmps 200 amplifiers (Electrical Geodesics Inc.; EGI, Eugene, OR). Recordings were referenced to the vertex sensor (Cz). Electrode impedances were below 50kΩ and data were analogue filtered from 0.1 to 100 Hz. Data were digitized at 250 Hz, stored on disk for subsequent off-line analysis, and recorded continuously throughout 2 min trial blocks.

1.4. Data analysis

Raw data were checked for bad channels (less than 5% for any participant), which were replaced using a spherical spline interpolation method (as implemented in BESA 5.0). Data were transformed to an average reference and digitally filtered from 2 to 40 Hz (6 db/octave rolloff, zero phase). To ensure that steady state had been adequately established, we quantified selective attention using only the last 100 s of each 120 s trial block. The 100 s window yields 0.01 Hz resolution, which was necessary to quantify neural response magnitudes at the specific oscillation frequencies used in the present experiments. Before computing FFT power, the mean and linear trends were removed (using MATLAB) for each EEG channel. Fig. 2 shows a head surface map of FFT power, collapsing over all frequencies and all conditions, averaged over all participants. Maximum ssVEP power was localized at midline sensors, over visual cortex. There was no other peak of activity associated with the ssVEP at any other spatial location. Indeed, given the size and complexity of the stimuli used here, and the fact that 100 s blocks were necessary to capture the tag frequencies, it is not surprising that the majority of the ssVEP signal recorded at the scalp would be limited in extent and come from the vicinity of visual cortex (see, e.g., Di Russo et al., 2006; Pastor, Artieda, Arbizu, Valencia, & Masdeu, 2003). FFT power at the frequency of stimulation averaged over 67 EEG sensors that captured the maximal signal, therefore, was used to quantify strength of selective attention (see Fig. 3, for an example). Phase and background power values (i.e. from 6.5 to 8.5 Hz, excluding the tag frequencies) were also quantified, but there were no significant attention effects on these variables, so they are not considered further.

2. Results

2.1. Behavioral responses

Correct responses were button presses happening 100–1000 ms after target onset (bar width change). An experiment (7-, 3-, 5-bar) by Attention Condition (attend-all, attend-mid) repeated-measures ANOVA (with Huynh–Feldt adjusted degrees of freedom) was used to test for differences on d-prime and correct response reaction times. For d-prime, there
was a significant effect of Attention Condition, $F(1,33) = 185.4$, $p < 0.001$, with participants being better at detecting target events during the attend-mid ($M = 2.34$, S.E. = 0.10) than the attend-all condition ($M = 1.25$, S.E. = 0.07). For reaction times, there also was a significant effect of Attention Condition, $F(1,33) = 15.4$, $p < 0.001$. Participants responded faster to targets in the attend-mid (582.5 ms, S.E. = 9.4) than the attend-all condition (607.3 ms, S.E. = 8.4). These effects did not differ across studies.

2.2. Brain activity

Attention Condition by Object repeated-measures ANOVAs (with Huynh–Feldt adjusted degrees of freedom) were used to test for differences on ssVEP power within each experiment (see Fig. 4). For the 7-bar experiment, there were no significant effects on ssVEP power. For the 3-bar experiment, there was a significant effect of Attention Condition on ssVEP power, $F(1,11) = 10.2$, $p = 0.009$. The Attention Condition by Object (middle bar, peripheral bar, unattended image) interaction was not significant, $F(2,22) = 2.1$, $p = 0.160$, $\eta = 0.161$. The ssVEP power, therefore, was larger for all stimuli under the attend-mid condition (582.5 ms, S.E. = 9.4) than the attend-all condition (607.3 ms, S.E. = 8.4). These effects did not differ across studies.

2.3. Relationship between behavior and brain activity

Pearson correlations were used to investigate the relationship between behavioral responses and selective attention within each experiment. Selective attention (ssVEP power) and behav-
ioral response (d-prime and correct response reaction times) difference scores were computed for these variables (attend-mid minus attend-all conditions) for each study; these differences scores were used as the dependent variables in the correlation analyses. The only correlation that was statistically significant was between the difference in ssVEP power to the middle bar and difference in d-prime for the 5-bar study, r(12) = 0.70, p = 0.011 (see Fig. 5), indicating that a greater increase in ssVEP power across conditions was associated with better detection ability.

3. Discussion

The present experiments investigated the neural correlates of selective attention when attended and unattended images spatially overlapped. Some results (the 5-bar study) were consistent with the thesis that attention can enhance neural activity to specific target events, even in a cluttered visual environment (Valdes-Sosa et al., 1998). These effects were not universal, as evidenced in the 3-bar study where both the unattended stimuli and attended target received neuronal enhancement. This result may highlight the limits of large-scale neural enhancement as a target identification mechanism. As has been hypothesized for the case of color discrimination (e.g., Müller & Keil, 2004), the amplitude of neural mass activity may be insensitive to other processes such as neural synchronization, which appear essential for attentive stimulus processing. Future work may employ the time–frequency aspects of macroscopic brain oscillations to elucidate the contribution of these processes for resolving superimposed stimuli.

The results of the 7-bar experiment were inconsistent with those of Chen et al. (2003), who reported paradoxically lower signal strength to the attended compared to the unattended image, when only the center part of the display required attention. By contrast, they observed neural enhancement when width changes across the entire array were task-relevant. In our study, there were no differences between the ssVEP power for attended and unattended bars in both the broad and the narrow conditions.

The most obvious difference between Chen et al. (2003) and the present research is method of brain activity measurement. Magneto-encephalography (MEG), as used in the Chen et al. (2003) study is primarily sensitive to activity of cortical pyramidal cells tangentially oriented to the recording sensors. In addition, MEG does not have some of the complications associated with recording voltage differences in a volume conductor as is the case with EEG. Thus, MEG may be more sensitive than EEG to focal activity and to changes in smaller cell populations. Given the increased sensitivity to activity in sulci (MEG) versus gyri (EEG), differences in results between studies may be expected to be complementary rather than converging in every respect.

The outcome of our 5-bar experiment, however, suggests an additional explanation for the difference in the 7-bar results between Chen et al. (2003) and the present report. In the 5-bar experiment, the ssVEP to the middle bar was strongly modulated by selective attention, being significantly increased in the attend-mid versus attend-all condition. In addition, the ssVEP to the peripheral bars decreased from the attend-all (when they were relevant for target identification) to the attend-mid condition (when they were no longer relevant). This pattern explains why in the 7-bar experiment, in which ssVEP responses to middle and peripheral bars were not differentiable, the attended image did not show a broad versus narrow attention effect. With the ssVEP response to some parts of the whole image increasing (middle bar) and to other parts of the image decreasing (peripheral bars), the overall effect would be an apparent lack of attentional modulation. This finding is more consistent with Kanwisher and Wojciulik’s (2000) thesis of differential enhancement of attention-related neural activity than with the operation of an inhibitory attentional mechanism (see also Valdes-Sosa et al., 1998). The results of the 7- and 5-bar studies also indicate that the level of analysis should be commensurate with the specificity of the selective attention effect to properly quantify its influence.

The findings of the 5-bar experiment showed that selective attention can be relatively specific for spatially distinct parts of an attended image at 1–2° of separation (Müller & Hübner, 2002; Müller et al., 2003). This was inconsistency across experiments, however, concerning the specificity of attention to an attended object that spatially overlapped an unattended image. In both the 7- and 5-bar experiments, ssVEP power for the unattended image was not modulated by attention condition. But in the 3-bar experiment, the ssVEP increased in the attend-mid condition to both the middle and peripheral bars of the attended image and the spatially overlapping unattended image.

There are at least two explanations for this result. First, perhaps the ssVEP to at least parts of the unattended image in the 7- and 5-bar experiments was increased during the attend-mid condition, but our level of measurement was too coarse to detect the change (in the same manner that modulation of the target bars of the attended image was undetectable in the 7-bar experiment). If so, this would indicate that (i) selective attention in the present design uses a location-, not a feature- or object-based mechanism and (ii) because selective attention cannot specifically enhance neural activity to objects as simple as edges, such enhancements may start as early as location-specific neurons in LGN (O’Connor, Fukui, Pinsk, & Kastner, 2002) and may be incapable of being refined via top-down control at later visual processing stages. This thesis seems inconsistent with other data (Luck & Hillyard, 2000; Müller & Hübner, 2002; Valdes-Sosa et al., 1998), although we cannot rule it out given the present experiments. Second, in the 3-bar experiment observers may have had a more difficult time parsing the overlapping stimuli into attended and unattended images. The additional bar lengths in the 5-bar experiment (4° longer than in the 3-bar experiment) may have enhanced perceptual separation of the middle and peripheral bars in the attended image from the unattended image. Attention may have spread to the unattended parts of the stimuli in the 3-bar experiment in a similar fashion as occurs when “foreground” and “background” must be modally rather than amodally completed (Driver, Davis, Russell, Turatto, & Freeman, 2001; Scholl, 2001; see also Meese & Freeman, 1995). These results may indicate that, although selective attention-related neural enhancements may begin in LGN, they are capable of being refined at later processing stages if the perceptual demands are amenable (e.g., Müller & Hübner, 2002).
A limitation of the present procedure is that the observed effects cannot be easily attributed to either feature- or object-based selection specifically. This distinction was not the main focus of the present study, but future ssVEP studies may usefully include stimulus arrays and experimental designs that control for the possibility that participants form visual objects rather than relying on single features. For instance, Nobre, Rao, and Chelazzi (2006) used a negative priming design together with grating stimuli comprising motion and/or color features within one object. Their results suggested that even when differential object cues are absent, selectively attending to single features such as color or motion is associated with specific neural modulation, suggesting active inhibition of irrelevant features. Similar processes may have contributed to the present results leading to parallel modulations that enhanced neural activity to the attended stimulus and ignoring of features that were irrelevant in the given context. When using simultaneously displayed and overlapping stimuli these two processes may act in parallel and be discernable in differentially frequency-tagged ssVEP streams. Under certain conditions, the result could be an enhancement for both attended and unattended stimuli (see the results of our 3-bar experiment). A report by Ding et al. (2006) suggests that such seemingly paradoxical effects may depend on the tagging frequency used. Experimental designs such as that of Nobre et al. (2006) will be required to test predictions concerning when such types of broad versus narrow amplification are observed.

Selective attention theoretically supports the ability to bias neural signals in favor of stimulus locations and/or features (Pessoa, Kastner, & Ungerleider, 2003), although a firm relationship between neural enhancements and processing of relevant stimuli is yet to be established (Driver & Frackowiak, 2001). In the present report, there was a relationship between neural enhancement associated with a narrower focus of attention and better target detection (see Fig. 5). Selective attention may assist with perception of relevant stimuli, but the ability of this mechanism to enhance specific neural firing associated with target selection and identification in complex visual scenes may be limited in certain visual environments (see the results of the 3-bar study). The partial success of selective attention in a complex visual world would be obviously helpful for speeding identification of relevant stimuli, but its limits may hint at the perceptual underpinning of, for instance, concealment mechanisms in nature. If predator or prey can confuse the perceptual system of other animals (by blending with the background enough to limit selective attention’s ability to make the separation), the additional time it takes for selective attention to verify the presence of danger or food may be the advantage needed to increase the chances for survival.

Acknowledgements

We thank Abby Stevens for helping in running the experiments. This work was supported by grants from the United States Public Health Service (MH51129 and MH57886).

References

